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Abstract. We study the tunnel effect for an inverted oscillator with complex frequency. 
The solution of the corresponding non-Hermitian (NH) S c h a n g e r  equation is found by 
the evolution operator method, based on the SU(l.1) structure of the Hamiltonian and 
the Wei-Norman theorem. We put forward a generalization of dwell time for NH systems 
built up from their biorthonormal states. The resulting tunnelling time turns out to be 
complex. 

A problem in quantum mechanics which is still controversial, in spite of its apparent 
simplicity, is the seemingly innocuous question: how long does it take a particle to 
tunnel through a potential barrier? Renewed interest in such a question has been 
recently revived [l, 21, in connection with the experimental applications (e.g. to high- 
energy physics) of tunnelling processes in semiconductors. 

Since. most of the physical systems one enwunters are not isolated but somehow 
interact with their surroundings, in previous work [3,4] we have investigated the 
problem of tunnelling for open systems described by time-dependent Hamiltonians of 
the Caldirola-Kanai 151 (a) type. However, CK oscillators cannot be considered as 
genuine dissipative systems [6]. As is well known, systems exhibiting a truly dissipa- 
tive behaviour (possessing decaying states) are phenomenologically described by non- 
Hermitian (NH) Hamiltonians 171. In the last few years, rigorous methods have been 
developed to study the time evolution of non-Hermitian systems [S, 91. 

In this letter, we discuss the tunnelling effect for a prototype NH Hamiltonian, i.e. 
the inverted oscillator with complex frequency 

H = - - - U  p2 2 e 2.’2 q 
2m 2 

As is well known, the main advantage of the inverted oscillator is that for such a 
potential the tunnelling time does not diverge at the threshold in semiclassical limit 
analysis [lo], contrary to the case of square-barrier potentials [l, 21. The prototype NH 
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Hamiltonian (1) is just a very simple, special case of the generalized parametric 
oscillator with complex coefficients that i s  often encountered as a phenomenological 
model in dissipative optical processes (e.g. electromagnetic pulse propagation in a 
free electron laser [ll]). 

In order to solve the time-dependent non-Hermitian Schrodinger (NHS) equation 
for Hamiltonian (I), we assume that the state of our system is initially represented by 
the wavepacket 

The solution of the NHS equation is then obtained by propagating the above initial 
state according to the relation 

7&",m1(% 0 =% t)+(%.P0)(4. 0). (3) 

Exploiting the Wei-Norman (w) theorem [12] and the SU(1,l) structure of 
Hamiltonian (l), we can.write the evolution operator in the ordered form 1131: 

(4) o q q ,  t) = e ~ ( ~ )  en(O+ eb(f)da/ep) e4wz/a+) 

where the w characteristic functions are given by 

b(0 A(t) = - = - In cosh(wteis) 2 

imw is 
a(t) =-e tanh(otei8); 

% 

ih 
2mw 

c(t) = - e-'@ tanh(wt e'@). 

Therefore the solution (3) reads explicity 
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As is well known from the theory of NH systems [S, 91 one has to consider also the 
time-dependent equation for the adjoint Hamiltonian H+ (#H) 

whose solution can be written as [9] 

a"q, 0 = W q ,  t)a~o.,,(e 0). (10) 

Here, %(q, t) is the evolution operator corresponding to H + ,  which reads l i e  (4), 
with the WN characteristic functions a(t), 6(t) ,  E( t )  formally obtainable from expres- 
sions (5)-(7) by the substitution @+-e. Therefore solution (10) becomes 

x(qo.Po)(q,  t, = (&&2)1/4 [ ~ c ( y ) ] ~ n e x p [  a(t, -8)q2~+ik~O-k2uZ 
1 eA(l. -RI 

1 +- 

It is easy to show that the operators 91, % are bi-unitary [9], namely 

QQ+ = Q+Q = I  (12) 

and 

(X(pD.P0)(4, ~ ) l w ~ w o ~ ( 4 >  tN=l  (13) 

i.e. the states ,y, w are bi-orthonormal at any time. 

sojourn) time for Hermitian systems is defined as 
As is well known from the theory of tunnelling processes [I, 21, the dwell (or 

where.(a, B) is an interval containing the barrier. Then, it is quite natural to generalize 
the above definition for open systems described by a NH Hamiltonian as follows: 
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Therefore, for the complex-frequency inveaed oscillator (1) we obtain, by (8) and 
(11): 
PNHG?, O'X*(4> OV(% 4 

- 1 1 [qeb(')-q,+2i0c(t)]* 
C2 

1-- a4 

- 
1-- 

with 

Finally, setting 

where I = (h/2mo)"* is a characteristic length of the system, we obtain 

Then, the NH sojourn time (15) reads 

with Ed(-) being the error function. 
In the case of an extended wavepacket, i.e. o>>d and 

we obtain, to a first approximation (L=P-a):  

(u=ot). 
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The integral (22) diverges for 8 = ~ 1 2 ,  because cosh (ue"") reduces to cos U and 
has poles at u=n(n +*). This fact is connected with the remarks given by Barton [IO] 
concerning the existence of singularities-which occur in the transmission and 
reflection amplitudes-in the case of the ordinary inverted oscillator. Indeed the 
Hamiltonian (1) for 8=n/2 reduces to that of the usual harmonic oscillator. 

In order to avoid the poles, we must take O<O<z/Z. In this case, equation (22) 
becomes simply 

K L e-ie 
z NH-2vTfJ0' (23 

It is easily seen that for 8 =O one recovers the sojourn time of the usual inverted 
oscillator [3, lo]. 

We stress that the sojourn time for the complex frequency inverted oscillator tums 
out to be complex. This is clearly expected to be a general feature of tunnelling times 
for NH systems, and is connected with the complex eigenvalues of the energy, needed 
to ensure the occurrence of trnly decaying states. 

The possibility of complex tunnelling times for Hermitian systems has been widely 
discussed in the literature [14-171. However, in the Hermitian case the very origin and 
meaning of complex tunnelling times remains largely unexplained (17). On the 
contrary, for the NH tunnel effect, the occurrence of complex times is quite easily 
understood on the basis of energy non-conservation and the time-energy uncertainty 
principle. 

In particular, their imaginary part accounts for the influence of additional degrees 
of freedom [IS], which (unlike the case of Hermitian systems) are always present 
(although unspecified) in the phenomenological representation of dissipative systems 
through non-Hermitian Hamiltonians. In this connection, a possible interpretation of 
the complex tunnelling time for open systems is that the red part corresponds to an 
'intrinsic' traversal time related to the potential bamer, whereas the imaginary part 
represents a characteristic time of interaction between the system and its surrounding. 
Of course, this does not mean at all that the real part of the complex time must 
coincide with the tunnelling time of the system in absence of dissipation, because it is 
expected on physical grounds that the coupling to extemal degrees of freedom does 
affect also, in general, the time spent by the system in crossing the barrier. In our 
opinion a deeper insight to this problem may come from the introduction of non- 
Hermitian sojourn time operators, along the lines of [17]. Such a point will be 
discussed elsewhere. 
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